
Recitation 4. March 30

Focus: orthogonal bases, orthogonal matrices, the Gram-Schmidt process, QR factorization

A basis q1, ..., qn of a vector space V is called orthogonal if:

qi ⊥ qj = 0 ⇔ qi · qj = 0 ⇔ qT
i qj =

[
0
]

for all 1 ≤ i 6= j ≤ n. The basis is called orthonormal if it is orthogonal and:

||qi|| = 1 ⇔ qi · qi = 1 ⇔ qT
i qi =

[
1
]

for all 1 ≤ i ≤ n. A square matrix is called orthogonal if its columns form an orthonormal basis, i.e.:

QTQ = I ⇔ Q−1 = QT

If Q is a rectangular matrix, the second condition above does not make sense, but QTQ = I does and precisely means
that the columns of Q are orthonormal vectors. Still, the term “orthogonal matrix” is only applied to square matrices.

Why are matrices with orthonormal columns important? We know that in order to write down the projection matrix
onto a subspace V , we need to construct a matrix A whose columns are a basis of V , and then the projection matrix
takes the form PV = A(ATA)−1AT . This formula is simplified if the basis is taken to be orthonormal (i.e. A has
orthonormal columns) because in this case ATA = I and we don’t need to compute any inverses to write down PV .

Therefore, it’s important to have a method to produce orthonormal bases of subspaces, and the Gram-Schmidt
process precisely does that. The setup is that you have a basis v1, ...,vn, and you want to transform it into an
orthonormal basis q1, ..., qn. At the i–th step, your basis will take the form q1, ..., qi−1,vi, ...,vn and the goal is to
change vi into some length 1 vector qi which is perpendicular to q1, ..., qi−1. The way to do so is a two-step process:

• Subtract from vi a linear combination of q1, ..., qi−1, so that the result is orthogonal to these i− 1 vectors:

wi = vi − projq1
vi − · · · − projqi−1

vi = vi − q1(q1 · vi)− · · · − qi−1(qi−1 · vi)

• Divide wi by its length, so the result will be a length 1 vector:

qi =
wi

||wi||

Let A be the matrix whose columns are v1, ...,vn, and let Q be the matrix whose columns are q1, ..., qn produced by
Gram-Schmidt. We have QTQ = I because the columns of Q are orthonormal, by construction. Moreover, we have:

A = QR

where R is an upper triangular square matrix (in practice, R is a product of elimination and diagonal matrices, ac-
cording to the steps in the Gram-Schmidt process).

Application of Gram-Schmidt: how to compute a basis for the orthogonal complement V ⊥ of a given k-dimensional

vector space V ⊂ Rn? Take an arbitrary basis v1, . . . ,vk of V , and complete it to an arbitrary basis v1, . . . ,vn of
Rn. Applying Gram-Schmidt to this basis will give you an orthonormal basis q1, . . . , qn of Rn. The first k of these
vectors (namely q1, . . . , qk) give a basis of V , and the last n−k of these vectors (namely qk+1, . . . , qn) give a basis of V ⊥.

1. Are the following statements true or false? Give arguments in each case.

• If V and W are orthogonal subspaces, the only vector they have in common is the zero vector.

• If V and W are orthogonal subspaces, then V ⊥ and W⊥ are orthogonal.



Solution:

• TRUE: any vector from V is orthogonal to any vector from W . So if there were a vector a ∈ V ∩W , this
would require a ⊥ a⇒ ||a|| = 0⇒ a = 0.

• FALSE: for example if V and W are perpendicular lines (passing through the origin) in three-dimensional
space. Then their orthogonal complements V ⊥ and W⊥ would be planes (passing through the origin) in
three-dimensional space, so they would intersect in a line. By the previous bullet, this means that V ⊥ and
W⊥ could not be orthogonal.

However, if V and W are orthogonal complements instead of just orthogonal, then the second bullet would be

true: this is because W = V ⊥ implies W⊥ = V (try and think of a quick argument) and so V ⊥ = W ⊥W⊥.

2. Prove that if A and B are orthogonal matrices of the same size, then AB is also orthogonal.

Solution: A and B being orthogonal means that ATA = BTB = I. Meanwhile:

(AB)TAB = BTATAB = BTB = I

so AB is also orthogonal.

3. Let q1, ..., qk ∈ Rn be orthonormal vectors. Compute the projection matrix onto the subspace generated by
q1, ..., qk, simplifying the answer as much as possible.

Solution: Let Q =
[
q1 . . . qk

]
and the assumption states that QTQ = I. The projection matrix onto

the column space of Q is:

PC(Q) = Q(QTQ)−1QT = QQT =

r1 · r1 . . . r1 · rn
...

. . .
...

rn · r1 . . . rn · rn


where r1, ..., rn denote the rows of the matrix Q.

4. Use Gram-Schmidt to compute the QR factorization of the matrix:

A =


1 1 0
1 2 1
1 1 3
1 2 4



Solution: Let v1, v2, v3 be the columns of A, and let us apply Gram-Schmidt to them. The first step is to
renormalize v1 in order for it to have length 1:

q1 =
v1

2
=

1

2


1
1
1
1


The next step is to modify v2 so that it becomes perpendicular to q1:

w2 = v2 − q1(q1 · v2) = v2 − 3q1 =
1

2


−1
1
−1
1





Note that w2 already has length 1, so we set:
q2 = w2

Finally, we modify w2 so that it becomes perpendicular to q1 and q2:

w3 = v3 − q1(q1 · v3)− q2(q2 · v3) = v3 − 4q1 − q2 =
3

2


−1
−1
1
1


We divide w3 by its length so that it has length 1:

q3 =
w3

3
=

1

2


−1
−1
1
1


Let:

Q =
[
q1 q2 q3

]
=

1

2


1 −1 −1
1 1 −1
1 −1 1
1 1 1


Then the steps in the Gram-Schmidt process read:

AD
( 1

2 )
1 E

(−3)
12 D

(1)
2 E

(−4)
13 E

(−1)
23 D

( 1
3 )

3 = Q

Let us move all the diagonal and elimination matrices to the right-hand side by multiplying with their inverses:

A = QD
(3)
3 E

(1)
23 E

(4)
13 D

(1)
2 E

(3)
12 D

(2)
1︸ ︷︷ ︸

call this R

So we got the A = QR factorization, and the R–matrix is explicitly given by:

R =

1 0 0
0 1 0
0 0 3

1 0 0
0 1 1
0 0 1

1 0 4
0 1 0
0 0 1

1 0 0
0 1 0
0 0 1

1 3 0
0 1 0
0 0 1

2 0 0
0 1 0
0 0 1

 =

2 3 4
0 1 1
0 0 3




